
Business Programming (using Python)

Zhaohu (Jonathan) Fan

Information Technology Management

Scheller College of Business

Georgia Institute of Technology

October 12, 2023

Main topics

Prepare for Midterm

HW #6

Explaining Python Classes in a simple way

Exercises

2 / 15

Prepare for Midterm

The midterm consists of 25-28 multiple choice questions (similar to the practice
exam). It covers M2:Python Fundamentals excluding class.

Studnets will be taking exams while in the classroom on Thursday Oct.
19th.

Closed book/closed notes

You are allowed 3 double-sided 8.5" x 11" sheets as cheat-sheet.
Additionally, you are allowed 1 piece of blank paper for scratch paper. You
must show sheets to the TA. You may use an on screen calculator or a
physical calculator. (Physical scientific calculator recommended)

3 / 15

Dog Class

4 / 15

Class

Class: Template (blueprint) for creating objects!

An object is an instance of a class; More than one object instance can be
created from a single class.

Class defines all properties and methods for an object.

Objects of the same class have a same set of properties (such as color, year,
engine, etc.).

Objects of the same class may have different characteristics for each
property (such as red, blue colors), and different event responses.

5 / 15

Class

Initializer method __init__ , called in this way because it’s the method that
initializes the attributes of the object. Moreover, it is automatically called once
the object is created.

Magical methods are special methods with double underscores on both
sides. For example, __add__ and __mul__ are used to respectively sum and
multiplicate objects of the same class, while __repr__ returns a
representation of the object as a string.

Instance methods are methods that belong to the object created. For
example, l.append(4) adds an element at the end of the list.

6 / 15

Dog Class: Create a Class
We will create an empty class and we’ll progressively add parts of code within the
tutorial.

We created a class with the name Dog, where pass is used to indicate that nothing
is defined.

Python

>>> class Dog:
>>> pass

7 / 15

Dog Class: Create a Class
Once we defined the Dog class, we can create an object of the class, which is assigned
to the variable jack. It’s built using a similar notation we use to call a function: Dog().

The object can also be called instance. Don’t be confused if you find the words
“instance” or “object” written somewhere, they always refer to the same thing.

Python

>>> jack = Dog()
>>>print(type(jack))

8 / 15

Dog Class: Initializer method
the initializer method __init__ is used to initialize the attributes of the Dog class.

self is a standard notation used as the first argument and refers to the object,
which will be created later. It’s also useful to access the attributes that belong to
the class.
name , breed and age are the remaining arguments. Each argument is used to store
the specific attribute’s value of the object.

Python

class Dog:
 def __init__(self,name,breed,age):
 self.Name = name
 self.Breed = breed
 self.Age = age
 print("Name: {}, Breed: {}, Age: {}".format(self.Name,
 self.Breed,self.Age))

9 / 15

Dog Class: Initializer method
Name, Breed and Age are the defined attributes. Note the attributes are typically not
capitalized.

Python

jack = Dog('Jack','Husky',5)
#Name: Jack, Breed: Husky, Age: 5
print(jack)
#<__main__.Dog object at 0x000002551DCEFFD0>
print(jack.Age)
#5

10 / 15

Dog Class: Magical Method
There is also the possibility to print the same information in a more sophisticated way.
For this purpose, we use the magical method __repr__:

Python

class Dog:
 def __init__(self,name,breed,age):
 self.Name = name
 self.Breed = breed
 self.Age = age
 def __repr__(self):
 return "Name: {}, Breed: {}, Age: {}".format(self.Name,
 self.Breed,self.Age)

11 / 15

Dog Class: Magical Method
The method __repr__ takes a unique parameter selffrom which it can access the
attributes of the object.

If we display the new instance created, we can look at the attributes and their
respective values.

Python

jack = Dog('Jack','Husky',5)
print(jack)
#Name: Jack, Breed: Husky, Age: 5

12 / 15

Dog Class: Instance Method
The instance methods are methods that belong to the class. As the magical methods,
they take an input the parameter self to access the attributes of the class. Let’s see an
example:

Python

class Dog:
 def __init__(self,name,breed,age,tired):
 self.Name = name
 self.Breed = breed
 self.Age = age
 self.Tired = tired
 def __repr__(self):
 return "Name: {}, Breed: {}, Age: {}".format(self.Name,
 self.Breed,self.Age)
 def Sleep(self):
 if self.Tired==True:
 return 'I will sleep'
 else:
 return "I don't want to sleep"

13 / 15

Dog Class: Instance Method
In the initializer method, we added a new argument tired and, consequently, a new
attribute Tired . After, we define a new method called Sleep: if the attribute’s value is
equal to True, the dog will sleep, otherwise, it won’t.

Python

jack = Dog('Jack','Husky',5,tired=False)
print(jack.Sleep())
#I don't want to sleep

14 / 15

Exercises

Please click on the link provided below.
In-Class Exercise

15 / 15

https://colab.research.google.com/drive/1qMukRvOE-EE0GxICsxi0-tuV6pLrF8Vk?usp=sharing

