Business Programming (using Python)

Zhaohu (Jonathan) Fan

Information Technology Management
Scheller College of Business
Georgia Institute of Technology

September 7, 2023

« Go over some of the Severance Chapter 5 concept
e Data structures

o List

o Control flow

= [teration - Loops

Data structures

Type Name Example Description

list [1, 2, 3] Ordered collection

tuple (1, 2, 3) Immutable ordered collection

dict {'a':1, 'b':2, 'c':3} Unordered (keyyvalue) mapping

set {1, 2, 3} Unordered collection of unique values

4 [16

e Lists are the basic ordered and mutable data collection type in Python.

o They can be defined with comma-separated values between square
brackets.

o For example, here Is a list of the first several prime numbers:

o L =7[2, 3,5, 7,11]

5/16

11

o How can you determine the length of a list in Python?
o How do you append a value to the end of a list?
o How does addition behave when used with lists?

o What does the sort() method do and how does it affect the original
list?

o and more....

7 /16

Lists

Codes & Outputs * Syntax

o A list can be defined with comma-

L=7J2, 3,657, 11
o [! separated values between square

print{L)
brackets.

[2, 3, 5, 7, 11]

o len

[21] # Length of a list

Tlen(L) = |ength of a list
5

o .append

[24] # Append a value to the end
L.append(388})
L

= Add an item to the end of the list.

[2, 3, 5, 7, 11, 11, 388]
= Addition concatenates lists

[25] # Addition concatenates lists o .sort()

L + [13, 17,19) L

[! = Sort the items of the list in place

[2, 3,5, 7, 11, 11, 36e, 13, 17, 19] = _sort(%, key=None, reverse=False)
[26] # sort() method sorts in-place * More on Lists (with a link).

L=1[2,5,1, 6, 3, 4]

L.sort(}

L

[1, 2, 3, 4, 5, 8]

https://docs.python.org/3/tutorial/datastructures.html

e Lists in Python can contain objects of any type or even a mix of types.

o They are not restricted to a single type.

o Examples:

[38] L = [1, 'two', 3.14, [@, 3, 5]]
L
[1, "two', 3.14, [e, 3, 5]]

o GPAs = ['John', 3.3, 'Sally', 2.2, 'Bernis', 3.8, 'Fred', 3.2, 'Victoria', 3.4, |'Valerie', 2.6, 'Eric’', 2.6]
print (GPAs)

["John', 3.3, 'sally', 2.2, 'Bernis’, 3.8, 'Fred', 3.2, 'victoria', 3.4, 'valerie', 2.6, 'Eric’, 2.6]

11

« Where indexing is a means of fetching a single value from the list, slicing
IS @ means of accessing multiple values in sub-lists.

e It uses a colon to indicate the start point (inclusive) and end point (non-
inclusive) of the sub-array.

11/16

List Indexing and slicing

Codes & Outputs ¢ Comments

o Python uses zero-based indexing.
@ L =12, 3, 5, 7, 11]
L

o Access the first element in using the

following syntax L[0]
[[2, 3, 5, 7, 11] g5y

o L[1] returns 3, because that is the next

[42} L[®] value at index 1.

o Elements at the end of the list can be
accessed with negative numbers, starting
from -1

2

© .11

= using the following syntax L[-11]

[44] L[-1]

11

[45] L[-2]

List Indexing and slicing

¢ Comments

Codes & Outputs
o Access the first three elements of the list
° L=1[2, 3,57, 11] in using the following syntax L[0:3]
L

o Slice takes just the values between the

L (23,5 7, 1] indices. If we leave out the first index, o is

assumed.
[47] L[@:3]
o Access the last three elements of the list in
[2, 3, 5] using the following syntax L[-3:]
o Specify a third integer that represents the
[49] L[:3] step size; for example, to select every
[2, 3, 5] second element of the list
= using the following syntax L[::2]
[50] L[-3:]
[5, 7, 11]

[51] L[::2] # equivalent to L[@:1len(L):2]

[2, 5, 11]

11

List indexing and slicing

Codes & Outputs > (e
o Specify a negative step , which will reverse
© u::-1] the array: L[::-1].
> [11, 7, 5, 3, 2] o Both indexing and slicing can be used to

set elements as well as access them.

[53] L[@] = 1ee
print{l)

[1e8, 3, 5, 7, 11]

[54] L[1:3] = [55%, 56]
print{L)

[1808, 55, 56, 7, 11]

15/ 16

Revisit control flow

e for lOOpPS
o while loops
o Download the lab notes from the Canvas page ([L5] lab notes.ipynb)

o Sample solution

https://colab.research.google.com/drive/1uLku4ldrib80y-X4oa-bkGtkyjMwvxL9?usp=sharing

